Multiscale Algorithms for Eigenvalue Problems
نویسندگان
چکیده
Iterative multiscale methods for electronic structure calculations offer several advantages for large-scale problems. Here we examine a nonlinear full approximation scheme (FAS) multigrid method for solving fixed potential and self-consistent eigenvalue problems. In principle, the expensive orthogonalization and Ritz projection operations can be moved to coarse levels, thus substantially reducing the overall computational expense. Results of the nonlinear multiscale approach are presented for simple fixed potential problems and for self-consistent pseudopotential calculations on large molecules. It is shown that, while excellent efficiencies can be obtained for problems with small numbers of states or welldefined eigenvalue cluster structure, the algorithm in its original form stalls for large-molecule problems with tens of occupied levels. Work is in progress to attempt to alleviate those difficulties.
منابع مشابه
A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملFIXED-WEIGHT EIGENVALUE OPTIMIZATION OF TRUSS STRUCTURES BY SWARM INTELLIGENT ALGORITHMS
Meta-heuristics have already received considerable attention in various engineering optimization fields. As one of the most rewarding tasks, eigenvalue optimization of truss structures is concerned in this study. In the proposed problem formulation the fundamental eigenvalue is to be maximized for a constant structural weight. The optimum is searched using Particle Swarm Optimization, PSO and i...
متن کاملMultiscale Computation of a Steklov Eigenvalue Problem with Rapidly Oscillating Coefficients
In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the ...
متن کاملOn an Adaptive Coarse Space and on Nonlinear Domain Decomposition
We consider two different aspects of FETI-DP domain decomposition methods [8, 23]. In the first part, we describe an adaptive construction of coarse spaces from local eigenvalue problems for the solution of heterogeneous, e.g., multiscale, problems. This strategy of constructing a coarse space is implemented using a deflation approach. In the second part, we introduce new domain decomposition a...
متن کاملDrawing Huge Graphs by Algebraic Multigrid Optimization
We present an extremely fast graph drawing algorithm for very large graphs, which we term ACE (for Algebraic multigrid Computation of Eigenvectors). ACE exhibits a vast improvement over the fastest algorithms we are currently aware of; using a serial PC, it draws graphs of millions of nodes in less than a minute. ACE finds an optimal drawing by minimizing a quadratic energy function. The minimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008